Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In order to perform highly dynamic and agile maneuvers, legged robots typically spend time in underactuated domains (e.g. with feet off the ground) where the system has limited command of its acceleration and a constrained amount of time before transitioning to a new domain (e.g. foot touchdown). Meanwhile, these transitions can instantaneously change the system’s state, possibly causing perturbations to be mapped arbitrarily far away from the target trajectory. These properties make it difficult for local feedback controllers to effectively recover from disturbances as the system evolves through underactuated domains and hybrid impact events. To address this, we utilize the fundamental solution matrix that characterizes the evolution of perturbations through a hybrid trajectory and its 2-norm, which represents the worst-case growth of perturbations. In this paper, the worst-case perturbation analysis is used to explicitly reason about the tracking performance of a hybrid trajectory and is incorporated in an iLQR framework to optimize a trajectory while taking into account the closed-loop convergence of the trajectory under an LQR tracking controller. The generated convergent trajectories recover more effectively from perturbations, are more robust to large disturbances, and use less feedback control effort than trajectories generated with traditional methods.more » « less
-
In this letter we present Hybrid iterative Linear Quadratic Estimation (HiLQE), an optimization based offline state estimation algorithm for hybrid dynamical systems. We utilize the saltation matrix, a first order approximation of the variational update through an event driven hybrid transition, to calculate gradient information through hybrid events in the backward pass of an iterative linear quadratic optimization over state estimates. This enables accurate computation of the value function approximation at each timestep. Additionally, the forward pass in the iterative algorithm is augmented with hybrid dynamics in the rollout. A reference extension method is used to account for varying impact times when comparing states for the feedback gain in noise calculation. The proposed method is demonstrated on an ASLIP hopper system with position measurements. In comparison to the Salted Kalman Filter (SKF), the algorithm presented here achieves a maximum of 63.55% reduction in estimation error magnitude over all state dimensions near impact events.more » « lessFree, publicly-accessible full text available April 1, 2026
-
In this paper, we present a method for updating robotic state belief through contact with uncertain surfaces and apply this update to a Kalman filter for more accurate state estimation. Examining how guard surface uncertainty affects the time spent in each mode, we derive a novel guard saltation matrix- which maps perturbations prior to hybrid events to perturbations after - accounting for additional variation in the resulting state. Additionally, we propose the use of parameterized reset functions - capturing how unknown parameters change how states are mapped from one mode to the next - the Jacobian of which accounts for additional uncertainty in the resulting state. The accuracy of these mappings is shown by simulating sampled distributions through uncertain transition events and comparing the resulting covariances. Finally, we integrate these additional terms into the “uncertainty aware Salted Kalman Filter”, uaSKF, and show a peak reduction in average estimation error by 24–60% on a variety of test conditions and systems.more » « less
-
Methods for state estimation that rely on visual information are challenging on legged robots due to rapid changes in the viewing angle of onboard cameras. In this work, we show that by leveraging structure in the way that the robot locomotes, the accuracy of visual-inertial SLAM in these challenging scenarios can be increased. We present a method that takes advantage of the underlying periodic predictability often present in the motion of legged robots to improve the performance of the feature tracking module within a visual-inertial SLAM system. Our method performs multi-session SLAM on a single robot, where each session is responsible for mapping during a distinct portion of the robot’s gait cycle. Our method produces lower absolute trajectory error than several state-of-the-art methods for visual-inertial SLAM in both a simulated environment and on data collected on a quadrupedal robot executing dynamic gaits. On real-world bounding gaits, our median trajectory error was less than 35% of the error of the next best estimate provided by state-of-the-art methods.more » « less
An official website of the United States government

Full Text Available